Stream: Archive Mirror: Isabelle Users Mailing List

Topic: [isabelle] Class _def theorem


view this post on Zulip Email Gateway (Aug 22 2022 at 16:54):

From: Lars Hupel <hupel@in.tum.de>
Dear list,

classes give rise to a constant definition, like so:

class eq =
fixes eq :: "'a ⇒ 'a ⇒ bool"
assumes refl: "eq x x" and
sym: "eq x y ⟹ eq y x" and
trans: "eq x y ⟹ eq y z ⟹ eq x z"

(* print_statement class.eq_def *)

theorem eq_def:
fixes eq :: "'a ⇒ 'a ⇒ bool"
shows "class.eq eq ≡ (∀x. eq x x) ∧ (∀x y. eq x y ⟶ eq y x) ∧ (∀x y z.
eq x y ⟶ eq y z ⟶ eq x z)"

I didn't find a way to obtain that theorem from ML, neither in structure
"Axclass" nor in "Class". Is it available somewhere?

Cheers
Lars

view this post on Zulip Email Gateway (Aug 22 2022 at 17:07):

From: Florian Haftmann <florian.haftmann@informatik.tu-muenchen.de>
Hi Lars,

the primitive definition of the locale predicate is indeed not stored in
the locale bookkeeping – but it could be added there of course.

Cheers,
Florian
signature.asc


Last updated: Nov 21 2024 at 12:39 UTC