Stream: Archive Mirror: Isabelle Users Mailing List

Topic: [isabelle] Question about Axiom specification


view this post on Zulip Email Gateway (Aug 22 2022 at 20:20):

From: patrick barlatier via Cl-isabelle-users <cl-isabelle-users@lists.cam.ac.uk>
I reiterate my question:
To help automatic reasoning with Sledgehammer, I wish to break down a single complex axiom by specifying definitions. For that I use the command "local" and "defines", then "assumes" in this way:
locale set_axioms_CLAY =  fixes less_eq :: "object ⇒ object ⇒ bool"  fixes bd00 :: "object ⇒ bool"  fixes bd01 :: "object ⇒ object ⇒ Uniset  ⇒ bool"  fixes bd02 :: "object ⇒ Uniset ⇒ bool"  fixes bd03 :: "object ⇒ object ⇒ Uniset  ⇒ bool"  defines BDOO :  " bd00(B) ≡  less_eq B B"  defines BDO1 :  "bd01 A B β ≡ (∀α. In α B & (∀C::object. In β C ⟷  (∀D. In α D ⟶ less_eq D C)& (∀D. less_eq D C ⟶ (∃E F::object. In α E & less_eq F D & less_eq F E))))"  defines BD02 : "bd02 A β ≡  (∃L. set_eq β (singleton L) & less_eq A L) "  defines  BD03: "bd03 A B β  ≡  bd00(B)  ⟶ bd01 A B β   ⟶  bd02 A β "  assumes BD04: "∀A B::object. less_eq A B  ≡ ∀ β::Uniset. BD03 A B β"begin

But I'm not sure that's correct? Here is the axiom:
lemma BDv4: "∀A B. less_eq A B  ⟷ ( (∀α β . In α B & (∀C. In β C ⟷  (∀D. In α D ⟶ less_eq D C)& (∀D. less_eq D C ⟶ (∃E F. In α E & less_eq F D &less_eq F E))) ⟶ (∃L. set_eq β (singleton L) & less_eq A L)))"  by (meson BD04)

Bests,Patrick
LISTIC - Université  de Savoie

view this post on Zulip Email Gateway (Aug 22 2022 at 20:20):

From: Alexander Krauss <krauss@in.tum.de>
Dear Patrick

Am 25.07.2019 um 10:28 schrieb patrick barlatier via Cl-isabelle-users:

I reiterate my question:
To help automatic reasoning with Sledgehammer, I wish to break down a single complex axiom by specifying definitions. For that I use the command "local" and "defines", then "assumes" in this way:

The formal material in your email is lacking line breaks, so it is
basically unreadable, at least in my mail client.

locale set_axioms_CLAY =  fixes less_eq :: "object ⇒ object ⇒ bool"  fixes bd00 :: "object ⇒ bool"  fixes bd01 :: "object ⇒ object ⇒ Uniset  ⇒ bool"  fixes bd02 :: "object ⇒ Uniset ⇒ bool"  fixes bd03 :: "object ⇒ object ⇒ Uniset  ⇒ bool"  defines BDOO :  " bd00(B) ≡  less_eq B B"  defines BDO1 :  "bd01 A B β ≡ (∀α. In α B & (∀C::object. In β C ⟷  (∀D. In α D ⟶ less_eq D C)& (∀D. less_eq D C ⟶ (∃E F::object. In α E & less_eq F D & less_eq F E))))"  defines BD02 : "bd02 A β ≡  (∃L. set_eq β (singleton L) & less_eq A L) "  defines  BD03: "bd03 A B β  ≡  bd00(B)  ⟶ bd01 A B β   ⟶  bd02 A β "  assumes BD04: "∀A B::object. less_eq A B  ≡ ∀ β::Uniset. BD03 A B β"begin

But I'm not sure that's correct? Here is the axiom:
lemma BDv4: "∀A B. less_eq A B  ⟷ ( (∀α β . In α B & (∀C. In β C ⟷  (∀D. In α D ⟶ less_eq D C)& (∀D. less_eq D C ⟶ (∃E F. In α E & less_eq F D &less_eq F E))) ⟶ (∃L. set_eq β (singleton L) & less_eq A L)))"  by (meson BD04)

I am also not really sure what your question is:

Alex


Last updated: Nov 21 2024 at 12:39 UTC