Stream: Archive Mirror: Isabelle Users Mailing List

Topic: [isabelle] unexpected (for me) output using FOL


view this post on Zulip Email Gateway (Aug 18 2022 at 09:51):

From: Lawrence Paulson <lp15@cam.ac.uk>
The collapsing of ALL x. P(x) to All(P) is a side-effect of the way
that all binding syntax is handled in Isabelle. Although it can be
annoying, here All(P)-->All(P) tells you that (ALL x. P(x)) and (ALL
y. P(y)) are actually the same formula in Isabelle.

Larry Paulson

view this post on Zulip Email Gateway (Aug 18 2022 at 09:52):

From: Lawrence Paulson <lp15@cam.ac.uk>
Here (ALL x y. P(x, y)) is internally All(%x. All(%y. P x y)), which
can be collapsed to All(%x. All(P x)), so you see (ALL x y. P(x, y)).
The "collapsing" is actually called eta-contraction and it is
performed by the rewriter.

[Note to Isabelle/HOL users: in FOL, P(x,y) is what you would write
as P x y. Thus this example behaves differently in Isabelle/HOL,
where P(x,y) abbreviates P(Pair x y) and the eta-contraction is no
longer possible.]

Larry Paulson

view this post on Zulip Email Gateway (Aug 18 2022 at 09:52):

From: Makarius <makarius@sketis.net>
This looks like you don't have Poly/ML installed properly for your
platform. Since this is ppc-darwin we already provide precompiled
packages for HOL etc. on the Isabelle download site. Try to use these
before attempting to install any operation system packages for Poly/ML,
ProofGeneral etc. that occasionally show up elsewhere.

This should enable you to run plain isabelle tty sessions at the least.
Getting a version of (X)Emacs that works with ProofGeneral is a different
issue.

Makarius

view this post on Zulip Email Gateway (Aug 18 2022 at 09:57):

From: Joao Marcos <jmarcos@dimap.ufrn.br>
Dear ALL x. IsabelleExpert(x):

Sometimes Isabelle returns outputs that I see as somewhat unexpected...

For instance, suppose I want to show that the name of a universally
quantified variable can be changed, and write:

Goalw [iff_def] "(ALL x. P(x)) <-> (ALL y. P(y))";

I would have expected then the output to be a goal such as:

((ALL x. P(x))-->(ALL y. P(y))) & ((ALL y. P(y))-->(ALL x. P(x)))

but Isabelle gives me the following:

Level 0 (1 subgoal)
((ALL x. P(x))<->(ALL y. P(y)))

  1. ((All(P)-->All(P))&(All(P)-->All(P)))
    val it = [] : Thm.thm list

WHY??

Suppose, moreover, I want to prove that contiguous universal
quantifiers can be exchanged, and write:

Goalw [iff_def] "(ALL x. (ALL y. P(x,y))) <-> (ALL y. (ALL x. P(x,y)))";

Here the output is:

Level 0 (1 subgoal)
(ALL x y. P(x, y)) <-> (ALL y x. P(x, y))

  1. ((ALL x. All(P(x))) --> (ALL y x. P(x, y))) &
    ((ALL y x. P(x, y)) --> (ALL x. All(P(x))))
    val it = [] : Thm.thm list

WHY does the system exchange some but not all instances of P(x,y) for
P(x), and uses "All" to write the new goal??

I note that these things only occur when I use Goalw plus a rewrite
rule such as iff_def, but not if I simply use Goal to prove my
theorem. Why?

Thanx in advance for the clarification,
JM


Last updated: Jan 04 2025 at 20:18 UTC